
HLA Object Model Template References

Department of Defense

High Level Architecture

Object Model Template

Version 1.1

12 February 1997

HLA Object Model Template References

HLA Object Model Template References

Table of Contents

FOREWORD...5

1 . P U R P O S E . 8

2 . B A C K G R O U N D . 2

2.1 OBJECT MODEL TEMPLATE RATIONALE ...10
2.2 FEDERATION OBJECT MODELS..10
2.3 SIMULATION OBJECT MODELS..11
2.4 RELATION TO OBJECT-ORIENTED OBJECT MODELS ...11

3 . H L A O M T C O M P O N E N T S . 5

3.1 OBJECT CLASS STRUCTURE TABLE...15
3.1.1 Purpose/Rationale...15
3.1.2 Table Format..17
3.1.3 Inclusion Criteria..20
3.1.4 Example..22

3.2 OBJECT INTERACTION TABLE..23
3.2.1 Purpose/Rationale...23
3.2.2 Table Format..26
3.2.3 Inclusion Criteria..29
3.2.4 Example..30

3.3 ATTRIBUTE/PARAMETER TABLE..32
3.3.1 Purpose/Rationale...32
3.3.2 Table Format..33
3.3.3 Inclusion Criteria..37
3.3.4 Example..38
3.3.5 Attribute/Parameter Table Subcomponents...40

3.3.5.1 Purpose/Rationale.... .40
3.3.5.2 Enumerated Datatype Table...40
3.3.5.3 Complex Datatype Table..41

4 . F O M / S O M L E X I C O N . 3 6

4.1 PURPOSE/RATIONALE ...46
4.2 TABLE FORMATS..46

4.2.1 Object Class Definitions...46
4.2.2 Object Interaction Definitions..47
4.2.3 Attribute/Parameter Definitions..48

APPENDIX A: TABLE ENTRY NOTATION. 49

APPENDIX B: ATTRIBUTE/PARAMETER BASETYPES. 40

A C R O N Y M S . 5 2

R E F E R E N C E S . 5 3

HLA Object Model Template References

List of Tables

TABLE 3-1. OBJECT CLASS STRUCTURE TABLE ...18

TABLE 3-2. OBJECT CLASS STRUCTURE TABLE - SOM EXAMPLE ...23

TABLE 3-3 OBJECT INTERACTION TABLE ...27

TABLE 3-4. OBJECT INTERACTION TABLE - SOM EXAMPLE ..31

TABLE 3-5. ATTRIBUTE/PARAMETER TABLE ..34

TABLE 3-6. ATTRIBUTE/PARAMETER TABLE - SOM EXAMPLE ..39

TABLE 3-7. ENUMERATED DATATYPE TABLE...40

TABLE 3-8. ENUMERATED DATATYPE TABLE - SOM EXAMPLE...41

TABLE 3-9. COMPLEX DATATYPE TABLE ..42

TABLE 3-10. COMPLEX DATATYPE TABLE - SOM EXAMPLE...44

TABLE 4-1. OBJECT CLASS DEFINITIONS ...47

TABLE 4-2. OBJECT INTERACTION DEFINITIONS..47

TABLE 4-3. ATTRIBUTE/PARAMETER DEFINITIONS..48

HLA Object Model Template References

FOREWORD

The formal definition of the Department of Defense High Level Architecture (HLA)

comprises three main components: the HLA Rules, the HLA Interface Specification, and the HLA

Object Model Template (OMT). This document is intended to provide a complete description of the

essential elements of the third component of the HLA, the OMT. The other two components of the

HLA formal definition are described in the following documents:

HLA Rules v1.0

HLA Interface Specification v1.0

In addition to these reference documents, the HLA Technical Library contains other

information sources relevant to developing and executing HLA federations. The elements of the

HLA Technical Library that are particularly relevant to HLA object model development include the

following:

HLA OMT Extensions: A description of the format and content of optional tables.

These additional tables are intended to document classes of information which are not
required for all HLA federations, but which may be useful for certain types of
applications.

HLA Glossary: A common set of semantics for terms used in the documents of the

HLA formal definition or the HLA Technical Library.

HLA Federation Development and Execution Process Model: A description

of the process used to build and execute HLA federations.

HLA OMT Use Cases: A set of case studies describing the process of developing

HLA object models in different communities of interest. Each case study is based on
the experiences of one of the HLA prototype federations (protofederations).

HLA OMT Test Procedures: A set of procedures for testing compliance of an

object model with the HLA OMT.

Other elements of the HLA Technical Library may also have some relevance to HLA object

model construction. Users of this document are encouraged to browse the contents of the HLA

Technical Library to discover sources of potentially relevant information, and to gain a broader

understanding of other general HLA resources.

HLA Object Model Template References

HLA Object Model Template References

HLA Object Model Template References

1. PURPOSE

The Department of Defense (DOD) Modeling and Simulation Master Plan [DOD95] calls for the

establishment of a DOD-wide High Level Architecture (HLA) for modeling and simulation,

applicable to a wide range of functional applications. The purpose of this architecture is to facilitate

interoperability among simulations and promote reuse of simulations and their components.

To support the general goals of the HLA, this document provides a specification of the

DOD HLA Object Model Template (OMT) for documenting key information about simulations and

federations. More specifically, the HLA OMT provides a template for documenting HLA-relevant

information about classes of simulation or federation objects and their attributes and interactions.

This common template facilitates understanding and comparisons of different simulations and

federations, and provides the format for a contract between members of a federation on the types of

objects and interactions that will be supported across its multiple interoperating simulations. This

document specifies both the type of information content required and a format for representing that

content for HLA object models.

HLA Object Model Template References

HLA Object Model Template References

2. BACKGROUND

2.1 Object Model Template Rationale

A standardized structural framework, or template, for specifying HLA object models is an essential

component of the HLA for the following reasons:

• Provides a commonly understood mechanism for specifying the exchange of public
data and general coordination among members of a federation.

• Provides a common, standardized mechanism for describing the capabilities of potential
federation members.

• Facilitates the design and application of common tool sets for development of HLA
object models.

HLA object models may be used to describe an individual federation member (federate), creating

an HLA Simulation Object Model (SOM), or to describe a named set of multiple interacting

federates (federation), creating a Federation Object Model (FOM). In either case, the primary

objective of the HLA Object Model Template (OMT) is to facilitate interoperability between

simulations and reuse of simulation components. All discussion of HLA object models in this

document applies to both SOMs and FOMs unless explicitly stated otherwise.

2.2 Federation Object Models

During development of an HLA federation, it is critical that all federation members achieve a

common understanding as to the nature or character of all required interactions between

participating federates. The primary purpose of an HLA FOM is to provide a specification of the

exchange of all public data among federates in a common, standardized format. The content of this

public data includes 1) an enumeration of all public object classes, 2) a description of all interaction

types and associated parameters, and 3) a specification of the attributes that characterize the public

objects. In addition, an HLA FOM may include supplemental information as described in the HLA

OMT Extensions document. Taken together, the components of an HLA FOM establish the

“information model contract” that is necessary (but not sufficient) to ensure interoperability among

the federates.

HLA Object Model Template References

2.3 Simulation Object Models

A critical step in the formation of a federation is the process of determining the composition of

individual simulation systems to best meet the sponsor's overall objectives. An HLA SOM is a

specification of the intrinsic capabilities that an individual simulation could offer to potential HLA

federations. The standard format in which SOMs are expressed facilitates determination of the

suitability of simulation systems for participation in a federation.

The HLA OMT formats described in this document are generally applicable to either FOMs

or SOMs. Thus, SOMs are also characterized in terms of their objects, attributes, and interactions.

The primary benefit from the common utilization of the OMT formats for FOMs and SOMs is that

it provides a common frame of reference for describing object models in the HLA community. In

some cases, this commonality may even allow SOM components to be integrated as “piece parts”

in a FOM, facilitating rapid FOM construction.

2.4 Relation to Object-Oriented Object Models

While the HLA OMT is the standardized documentation structure for HLA object models, FOMs

and SOMs do not correspond entirely to common definitions of object models in object-oriented

(OO) development methodologies. The HLA object model combines elements of both the static and

dynamic views of traditional OO object models. The static elements of an HLA object model

include object classes, their attributes, and (optionally) associations, but do not currently include

the object operations (or methods) of OO static models. The dynamic component of an HLA object

model currently focuses on pairwise interactions between classes of objects, while OO dynamic

models typically include additional information about sequences of events and state transition

models of objects. Specification of HLA object class hierarchies tends to be driven by the interests

of subscribing simulation systems, rather than the inheritance considerations that tend to dominate

OO development models. HLA object models also differ in that they are ordinarily expected to

contain less detail than an OO development object model since they are not designed for software

development but for federation development.

Not only does the HLA conception of an object model differ from that of traditional OO

object models, but HLA objects themselves also differ from the common OO conception of

objects. Responsibility for updating HLA object attributes may be distributed among different

federates in a federation, whereas OO objects characteristically associate update responsibilities

with operations that are closely tied to the object’s class definition. This difference does not

preclude OO implementations of objects within individual HLA federates; however, federation

objects may transcend their individual representations within specific federates, being defined by

HLA Object Model Template References

the composition of all the attribute values published for them by any federate. When a federate

instantiates an object, it initially owns those attributes of the object which it declared it would

publish. However, ownership of some or all of these attributes may be transferred to other

federates during the federation execution. When multiple federates own different attributes of the

same object, responsibility for maintaining the object’s state is effectively distributed across the

federation, unlike a traditional OO object whose state is locally encapsulated.

In addition to the stated differences between HLA object models and traditional OO object

models, there are also some differences in the semantics of the terminology used to describe similar

concepts (e.g., class, object, interaction). Although descriptions of these concepts are provided

later in this document, precise definitions of these terms can also be found in the separate HLA

Glossary document.

HLA Object Model Template References

HLA Object Model Template References

3. HLA OMT COMPONENTS

HLA object models are composed of a group of interrelated components specifying information

about classes of objects, their attributes, and their interactions. While it is possible to represent the

information content of these components in many different ways, the HLA requires documentation

of these components in the form of tables. The template for the core of an HLA object model uses a

tabular format and consists of the following components:

• Object Class Structure Table: To record the subclass-superclass relations
between different types of simulation/federation objects.

• Object Interaction Table: To record the types of interactions possible between
different classes of objects, their affected attributes, and the interaction parameters.

• Attribute/Parameter Table: To specify features of the public attributes of objects
and the parameters of interactions in a simulation/federation.

• FOM/SOM Lexicon: To define all of the terms used in the tables.

Both federations and individual simulations (federates) are required to use all four of the

core OMT components when providing an HLA object model, although, in some cases, certain

tables may be empty. Since all object information is classified by object classes, there must be at

least one object class for any meaningful HLA object model. Thus, every HLA object model must

have a Object Class Structure Table containing at least one object class.

While federations typically will support interactions among some of the objects of its

federates, some federates (such as a stealth viewer) might not be involved in interactions, so the

Object Interaction Table may be empty for some HLA object models. It is expected that federates

will commonly have objects with attributes of interest across the federation, in which cases, their

documentation in the Attribute/Parameter Table is required. However, a federate or an entire

federation may exchange information solely via interactions, in which case its Attribute/Parameter

Table may be empty. While either the Object Interaction Table or the Attribute/Parameter Table

may, thus, be empty, an HLA object model would not be of much use if both of these tables were

empty since such a model would not support any exchange of information between federates

except for notifications of the existence of objects.

The final HLA OMT component, the FOM/SOM Lexicon, is essential to ensure that the

semantics of the terms used in an HLA object model are understood and documented. Since there

HLA Object Model Template References

will always be at least one term in an HLA object model, there will always be at least one term

defined in the Lexicon, and ordinarily many more.

Any entry within any of the OMT tables may be annotated with additional descriptive

information outside of the immediate table structure. This “notes” feature permits users to

associate explanatory information with individual table entries as required to facilitate effective use

of the data. The format for attaching a note to a particular table entry is a numerical superscript

enclosed by brackets. The note itself is identified by the corresponding superscript, and is

unconstrained in terms of format. If a set of notes is defined for a given FOM or SOM, the notes

must be included as part of the object model description.

In addition to the four OMT components identified above, federates and federations may

also include supplemental categories of descriptive information in order to facilitate a more

complete understanding of the object model. The format and content of this optional information is

provided in the OMT Extensions Document.

The basics of each OMT component are presented in the following separate sections along

with a brief review of the rationale for including them in the OMT. The template format for each

component is provided and described. In addition, some criteria are suggested to help guide

decisions on when to include specific simulation or federation features within each of these

components for a specific HLA object model.

3.1 Object Class Structure Table

3 .1 .1 Purpose/Rationale

The object class structure of an HLA object model is defined by a set of relations between classes

of objects from the simulation or federation domain. An HLA object model class is a collection of

objects with some properties, behavior, relationships, and semantics in common. Each of the

individual objects in a class is said to be a member (or instance) of that class. Class names in an

HLA object model must be defined via the ASCII character set, and must be globally unique: no

class name in a Class Structure Table may be identical to any other class name elsewhere in this

table. However, class names may include other class names as parts (textual substrings) to indicate

relations between classes.

An HLA class structure is defined in terms of hierarchical relationships between classes of

objects. Immediate superclass-to-subclass relationships are represented via the inclusion of the

associated class names in adjacent columns of the Object Class Structure Table. Non-immediate

superclass-to-subclass relationships are derived via transitivity from the immediate relations: if A is

HLA Object Model Template References

a superclass of B, and B is a superclass of C, then A is a (derived) superclass of C. Superclass and

subclass play inverse roles in these relations: if A is a superclass of B, then B is a subclass of A.

Subclasses can be considered to be specializations, or refinements, of their immediate

superclasses. Subclasses always inherit the characteristics (attributes and interactions) of their

immediate superclass, and may possess additional characteristics to provide the desired

specialization. These types of object class relationships (referred to as “is-a” relationships in the

OO literature) may also be defined in terms of their instances: a class A is a superclass of class B

only if each of the instances of class B are also instances of class A. Under this conception, it is

useful to distinguish derived instances of a class from explicitly declared instances. Once an object

is explicitly declared to be an instance of some object class, it becomes an implicit (or derived)

instance of all the superclasses of that class. For example, if the class M1_Tank is a subclass of

Tank, then an object declared to be an M1_Tank, will be a derived instance of Tank. While some

classes (such as Tank) might be designed for organizational purposes and not intended to have any

explicitly declared instances, such "abstract" classes may still have derived instances.

A class is a root in a class structure if it has no superclasses in that structure. A class is a

leaf of a class structure if it has no subclasses. If each class has at most one immediate superclass,

then the class structure is said to have single inheritance and will form either a tree structure or a

forest of trees, depending upon whether there are one or more roots. If some classes have more

than one immediate superclass, then the class hierarchy is said to have multiple inheritance. HLA

object model class hierarchies must be represented via single inheritance (no multiple inheritance),

although flat structures (with no subclasses) are also permissable.

In general, simulations and other federates participating in a federation execution may

subscribe to object classes at any level of the class hierarchy. By subscribing to all attributes of a

specified object class, a federate is ensured of receiving all attribute value updates of attributes

defined for that class and all of its superclasses for all instances of that class and all instances of its

subclasses. After subscribing to an object class, a federate is notified by the Discover Object

service of the Run-Time Infrastructure (RTI) of the existence of any instances of that class (or its

subclasses) which meet their discovery criteria. This service provides a class name and object ID

(plus any available attribute values) for every such discovered object. The RTI will report objects

as belonging to the most specific object class or classes to which the federate is directly subscribed

and which meets the federate’s discovery criteria. If the federate subscribes to multiple levels, the

RTI’s discovery notification will identify an object as an instance of the lowest-level class (or

classes) to which the object belongs among those subscribed by the federate.

Object classes provide the means for federation participants to subscribe to information

about all individual instances of objects with common characteristics, such as all M1A1 tanks or

HLA Object Model Template References

F117A fighters. Classes are also essential to specifying the types of attributes and interactions

characteristic of simulation objects since these are defined relative to classes of objects, not unique

to individual instances. Basic services of the HLA RTI support subscriptions to object classes and

their attributes by federates participating in a federation execution. So the RTI needs to know the

object classes, attributes, and interactions if it is to perform consistency checks and to support

distribution of object information by class to the federates of a federation execution.

A class hierarchy expands the capabilities of a flat classification scheme by enabling

federates to subscribe to information about broad superclasses of objects, such as all tanks, all

attack fighters, or even all ground vehicles, air vehicles, or sea vehicles. The existence of a class

hierarchy can simplify the subscription to class information when federates are interested in broad

classes of objects. The HLA interface supports subscription to all attributes of any class in an

object class hierarchy so that federates can easily subscribe to all and only those classes of interest.

An object class hierarchy also supports simplification of the specification of attributes, by placing

common attributes of multiple subclasses in a common superclass. Thus, class hierarchies enable

simpler management of the interests of different federates in the objects and attributes involved in a

federation execution.

The interest management simplification enabled by object class hierarchies also extends to

interests in interactions. An object class hierarchy supports modeling of interactions at multiple

levels of specificity with respect to the classes of interacting objects since the objects in a class

inherit the interactions of their superclasses. For example, a weapon fire interaction might be

specified as a single relation between any two objects in the platform class, rather than specifying a

separate interaction type for every specific pair of platform subclasses. Thus, object class

hierarchies enable specification of interaction hierarchies, which permit subscription to interactions

at levels appropriate to a federate’s interests.

3 .1 .2 Table Format

The object class structure template of Table 3-1 provides a format for representing the subclass-

superclass hierarchy of object classes. It begins with the most general object classes in the left

column, followed by all their subclasses in the next column, and then a further level of subclasses.

The number of intermediate columns used here depends upon the needs of the federation. A

federation that uses a deeper hierarchy than illustrated by the template of Table

3-1 may add columns as needed. Finally, the most specific object classes are specified by

enumeration in the farthest right column. For cases in which the whole class hierarchy is too

HLA Object Model Template References

O
b

je
ct

 C
la

ss

 S
tr

u
ct

u
re

 T
ab

le

<
cl

as
s>

 (
<

ps
>

)

[<
cl

as
s>

 (
<

ps
>

)]
[<

cl
as

s>
 (

<
ps

>
)]

[<
cl

as
s>

 (
<

ps
>

)]
 [,

<
cl

as
s>

 (
<

ps
>

)]
*

| [
<

re
f>

]

[<
cl

as
s>

 (
<

ps
>

)]

...
...

[<
cl

as
s>

 (
<

ps
>

)]

[<
cl

as
s>

 (
<

ps
>

)]
[<

cl
as

s>
 (

<
ps

>
)]

...
...

[<
cl

as
s>

 (
<

ps
>

)]

...
...

...

<
cl

as
s>

 (
<

ps
>

)

[<
cl

as
s>

 (
<

ps
>

)]
[<

cl
as

s>
 (

<
ps

>
)]

[<
cl

as
s>

 (
<

ps
>

)]

...

...
...

...
...

... [<
cl

as
s>

 (
<

ps
>

)]
 [,

<
cl

as
s>

 (
<

ps
>

)]
*

| [
<

re
f>

]

[<
cl

as
s>

 (
<

ps
>

)]
 [,

<
cl

as
s>

 (
<

ps
>

)]
*

| [
<

re
f>

]

[<
cl

as
s>

 (
<

ps
>

)]
 [,

<
cl

as
s>

 (
<

ps
>

)]
*

| [
<

re
f>

]

[<
cl

as
s>

 (
<

ps
>

)]
 [,

<
cl

as
s>

 (
<

ps
>

)]
*

| [
<

re
f>

]

[<
cl

as
s>

 (
<

ps
>

)]
 [,

<
cl

as
s>

 (
<

ps
>

)]
*

| [
<

re
f>

]

[<
cl

as
s>

 (
<

ps
>

)]
 [,

<
cl

as
s>

 (
<

ps
>

)]
*

| [
<

re
f>

]

Table 3-1. Object Class Structure Table

deep to fit across a single page, a reference (<ref>) to a continuation table may be provided in the

last column. Each object class must have all of its subclasses specified in the next column to its

right or in a continuation table referenced in that column. An example of how such a table may be

HLA Object Model Template References

filled in is provided in Section 3.1.4, as well as in the separate HLA OMT Use Cases document.

See Appendix A for a brief description of the notation that is used for specifying entries for this

table.Each object class in the Object Class Structure Table will be followed by information on

publication and subscription capabilities enclosed in parentheses, as designated in the template

using the abbreviated variable name <ps>. Three basic capability levels are distinguished with

respect to a given object class:

 publish able (P) : The specified object class can be published by a federate using the Publish
Object Class service of the RTI. This also requires that a federate is capable of
meaningful invocations of the Register Object service of the RTI using this class’s
name.

 subscribable (S) : A federate is currently capable of utilizing and (potentially) reacting to
information on objects in the specified class. Qualifying for this subscription category
requires the minimal capability of being able to respond appropriately to the RTI
message of Discover Object for objects of this class.

 n either publish able or subscribable (N) : The object class is neither publishable nor
subscribable by a federate.

These definitions apply equally to FOMs and SOMs, although an object class only needs to be

publishable or subscribable by a single federate in a federation for it to be classified as publishable

or subscribable, respectively, by the federation as a whole.

The publishable and subscribable capabilities are intended to identify meaningful

capabilities of a federation or federate with respect to the associated object classes. Although it is

difficult to formulate precise criteria for distinguishing such capabilities for all possible cases, the

general intended interpretation may be characterized. An object class is publishable by a federate in

this sense only if the federate is capable of somehow modeling the existence of objects in this class

when it instantiates them. It is not enough to be capable of issuing calls to the cited RTI services

for publication or instantiation, which any simulation might easily accomplish for any arbitrary

object class. The publishable designation is intended to allow federates to distinguish their internal

capabilities for modeling objects of the associated classes as well as their ability to share

information about such objects in an HLA federation. An object class is subscribable by a federate

only if the federate can make substantive use of instances of the class when it is notified of them by

the RTI. An object class is not subscribable by a federate if it always ignores instantiation notices

and updates for object attributes in that class. While the HLA requires that substantive capabilities

underlie designations of object classes as publishable or subscribable, the detailed determination of

what is meant by “substantive” for a particular FOM or SOM must be left to the discretion of their

developers.

HLA Object Model Template References

The publishable and subscribable capabilities may both be present for an object class, or

various other combinations, depending on the type of class. Classes that are not publishable may

be “abstract”. An abstract class has no explicitly declared instances since instantiations using its

class name are not permitted. However, abstract classes ordinarily have “concrete” subclasses,

i.e., subclasses which can be instantiated. Abstract classes can be useful for subscription

purposes, simplifying some subscriptions to information about objects in their subclasses. Abstract

classes can also simplify the specification of attributes by allowing common attributes of multiple

object classes to be specified once in a common abstract superclass.

An individual federate must specify its publishing and subscription capabilities in its SOM

Object Class Structure Table by any of the four different combinations of publishing and

subscription capabilities from the set {P, S, PS, N}. An object class may be publishable without

being subscribable (P), may be subscribable without being publishable (S), or may both

publishable and subscribable (PS) for an individual federate. In some cases, a federate may even

have an abstract object class in its SOM which is neither publishable nor subscribable (N). Such an

object class might be included in a SOM to provide a convenient grouping of concrete subclasses

for purposes of defining an interaction which could be initiated by an instance of any of these

subclasses. To illustrate, an object class of Ground_Vehicle might be abstract, not published, and

not subscribable, but could provide a convenient means of defining a Ground_to_Air_Engagement

interaction (which is publishable and subscribable). Without such general classes, a

Ground_to_Air_Engagement could not be so succinctly defined as an interaction between objects

in the classes of Ground_Vehicle and Air_Vehicle.

Publication and subscription capabilities for a federation are somewhat different from those

of a single federate. Whenever a federation supports publication of an object class, it must support

subscription as well since it would be useless to publish an object class that could not be

subscribed to within a federation. Thus, the publishable/subscribable capability designations for an

object class in a FOM are taken from the more restricted set {S , PS, N}. This allows the

publication and subscription capabilities recorded in a FOM to distinguish between abstract classes

(S) or (N), and concrete, publishable and subscribable (PS) classes.

3 .1 .3 Inclusion Criteria

The criteria for designing a object class hierarchy for an HLA object model are fundamentally

different for individual federates than for federations. The Object Class Structure Table of a FOM

represents an agreement between the federates in a federation on how to classify public objects for

the purposes of federation executions. The Object Class Structure Table of a SOM is a type of

advertisement of the classes of objects which the federate can support (as publishable or

HLA Object Model Template References

subscribable) in potential federations. In neither case does the HLA require specific object classes

or object class hierarchies to appear in the Object Class Structure Table. However, reference to an

object class in another component (table) of a FOM or SOM always requires its inclusion in the

Object Class Structure Table.

For federations, multiple criteria can influence the construction of a suitable object class

hierarchy. Naturally, there must be classes for all of the types of objects that will participate

publicly in federation executions. An object is understood as participating publicly in a federation

execution whenever any of its attributes or interactions are being published during that execution.

Thus, it is a federation’s interests in information about simulation objects, their attributes, and

interactions that drive which classes should be included in a federation’s Object Class Structure

Table.

Three general criteria have been identified that require a suitable class to be included within

the object class hierarchy of an HLA FOM:

• Publication of object attributes.

• Publication of object interactions.

• Subscription to attributes or interactions at a higher level of object class abstraction.

Published attributes are those whose values a federate makes available to other federates during

execution. An object class must be listed in the Object Class Structure Table for any object with

public attributes since objects can be instantiated through the RTI during a federation execution

only if they are associated with a class. The initiating object class(es) and receiving object class(es)

(if any) of every HLA interaction must also appear in the Object Class Structure Table. In fact, any

object class that is referenced elsewhere in an HLA object model (including any optional

information as described in the HLA OMT Extensions document) must also be included in the

object class hierarchy.

While a set of concrete object classes for the most specific types of entities involved in a

federation (e.g., M1 tanks and Bradley fighting vehicles) may completely satisfy the subscription

requirements of some types of HLA applications, additional higher-level object classes will be

needed if federates wish to be able to subscribe to object information at higher levels of abstraction

(e.g., tanks, armored vehicles, or ground vehicles). For a federate to be able to subscribe to object

information at a desired level of abstraction, an object class at that level of abstraction must appear

in the Object Class Structure Table. For example, suppose a federation involved both air, land, and

sea forces of many specific types. If a particular federate did not require notification of the specific

types of land vehicles, but did require notification of land vehicles in its area of interest, then a

suitable abstract class (such as Ground_Vehicle) would be needed to make this possible.

HLA Object Model Template References

While classes are clearly needed for all the public objects, many alternative class hierarchies

can be devised to cover any given set of objects. The particular demarcations and levels of classes

selected for an HLA FOM are the result of the federation development process. This selection is

driven largely by the interests of the federates in subscribing to information about classes of

objects. Object class hierarchies that may already exist for individual simulations may be

incorporated into a FOM object class hierarchy if they meet the interests of the federation as a

whole. However, since new classifications of objects may be warranted to meet federation needs

which were not previously made explicit in any of their participating federates, FOM object classes

and their subclass relations are not constrained to be a subset of those of the SOMs of the

participating federates.

3 .1 .4 Example

Table 3-2 illustrates an example of how the Object Class Structure Table may be utilized to

represent a simple system. In this case, the system being represented is a typical neighborhood

restaurant. The simulation of this restaurant’s operations can be considered to be a potential

federate in a larger-scale federation, perhaps representing the combined, coordinated operation of a

chain of restaurants. The intent of this example is not to specify a complete SOM for this system,

but rather to provide partial illustrations as to how the OMT tables may be used to capture relevant

information about the system.

In this example, a subset of a complete object class hierarchy is shown as consisting of five

object classes at the uppermost level. For this particular simulation, no class decomposition was

necessary for the first three classes. For the fourth class, a single level of decomposition is shown

resulting in five leaf classes. For the fifth class, several levels of decomposition are shown to

illustrate a partial representation of the restaurant’s “menu”. Some of the deeper levels in this

hierarchy could have been modeled as attributes (e.g., Clam_Chowder could have been a leaf

node, with an attribute of Type to represent the enumerated values of Manhattan or New_England).

However, the modeler in this example opted to represent the most specific food types as individual

classes. In all cases in this example, abstract classes are designated as “subscribable” only, while

the leaf nodes (concrete classes) are designated as both “publishable” and “subscribable”.

HLA Object Model Template References

Object Class Structure Table

Customer (PS)

Bill (PS)

Order (PS)
Employee (S) Greeter (PS)

Waiter (PS)

Cashier (PS)
Dishwasher (PS)

Cook (PS)

Food (S)

Drink (S) Water (PS)

Coffee (PS)

Soda (S) Cola (PS)

Orange (PS)

Root_Beer (PS)

Appetizer (S) Soup (S) Clam_Chowder (S) Manhattan (PS)

New_England (PS)
Beef_Barley (PS)

Nachos (PS)

Entree(S) Beef (PS)
Chicken (PS)

Seafood (S) Fish (PS)

Shrimp (PS)

Lobster (PS)

Pasta (PS)

Dessert (S) Cake (PS)

Ice_Cream (S) Chocolate (PS)

Vanilla (PS)

Side_Dish(S) Corn (PS)

Broccoli (PS)

Baked Potato (PS)

Main_Course (PS)

Table 3-2. Object Class Structure Table - SOM Example

3 .2 Object Interaction Table

3 .2 .1 Purpose/Rationale

An interaction is an explicit action taken by an object that can optionally be directed toward another

object, geographical area, etc. Interactions are specified in the Object Interaction Table of HLA

object models in terms of the interaction structure, the classes of the initiating and receiving

objects, their affected attributes, and the parameters of the interaction. In addition, the capabilities

of an individual federate for initiating, sensing, and reacting to such interactions are recorded for

SOMs.

HLA Object Model Template References

The interaction structure of an HLA object model is a hierarchical structure composed of

relations of generalization (or specialization) between different types of interactions. For example,

an engagement interaction might be specialized by air-to-ground engagements, ship-to-air

engagements, and others. This engagement interaction, then, would be said to generalize its more

specific types. If there are no generalizations of interaction types for a federation or simulation,

then the interaction structure will be flat, consisting of a set of unstructured interactions.

An interaction hierarchy in an HLA object model is designed to support inheritance in

subscriptions. When a federate subscribes to an interaction class, using the Subscribe Interaction

Class service of the RTI, it receives notification of all interactions that occur during a federation

execution which are identified as instances of that class or as instances of any of its subclasses.

Subscribing to an engagement interaction, for example, would result in notification of all air-to-

ground engagements and ship-to-air engagements if they are subclasses of this interaction.

The classes of objects involved in interactions of a specific type are identified along with

the type. Such classes may be designated for initiating objects as well as receiving objects.

Initiating objects are those to which credit may be given for initiating an interaction, while receiving

objects may be affected by the interaction but do not initiate it. A common example for initiating

and receiving object classes comes from weapon engagement interactions, in which the source of

the weapons fire is the initiating object and the recipient of the weapons fire is the receiving object.

More specifically, in an air-to-ground engagement, the initiating object class might be that of

Air_Vehicle while the receiving object classes might include Ground_Vehicle and

Cultural_Feature.

While both initiating and receiving object classes are accommodated by the HLA OMT,

there may be no specific receiving object class in some cases. For instance, if a platform is firing

into an area instead of at a specific target, its responsible federate simply sends the firing event

(interaction) to the current federation execution along with associated parameters. All federates with

objects that may be affected by this event (e.g., objects in the area targeted) simply subscribe to

that particular interaction class, and decide for themselves whether instances affect them or not.

Thus, for some classes of interactions, the receiving object field of the HLA OMT interaction

component will make sense (e.g., weapon detonates at platform) while for interaction classes in

which there is no clear recipient, it may not. Initiating object classes are always required for

interactions in the Object Interaction Table, although the initiating class may be notional (rather than

explicitly known) in SOMs when the simulation can receive but not initiate the interaction.

Furthermore, the distinctions of initiating and receiving objects may not be relevant to some

types of interactions. Some types of collisions, for example, in which two independently moving

HLA Object Model Template References

objects collide, may provide no basis for distinguishing an initiating and receiving object. For any

such interactions, the HLA OMT is indifferent about which classes of involved objects are

designated as initiating and which are designated as receiving in the HLA object model.

Included with the initiating and receiving object classes designated for each type of

interaction are those attributes of these objects which may be affected by the interaction, along with

optional comments on the nature of the effects. Not all interactions will affect attributes of both

initiating and receiving object classes. The receiving object class most commonly has its attributes

affected by an interaction, either directly by a change in attribute value, or indirectly by influencing

future variations in that attribute’s value. An air-to-ground weapons engagement, for example,

might affect the location of a tank indirectly by immobilizing it, although it does not change the

current value of its location. All such affected attributes, whether directly altered or indirectly

affected, should be documented with the interaction in the HLA object model. Additionally, the

object model may use square brackets to distinguish those attributes that are only possibly affected

by an interaction from those that are always affected by a particular type of interaction. Comments

may be included to clarify the types of effects possible (e.g., immobilization) but the detailed

algorithms determining those effects are not currently included in HLA object models.

Interaction parameters in HLA object models record the parameters of an interaction. These

parameters are precisely those that are sent along with the interaction class name and interacting

object IDs in a call to the Send Interaction service of the RTI. Examples of interaction parameters

include object class names, object attributes, constants, and other user-defined datatypes.

Interaction parameters may be required to specify some features or properties of an interaction

which are needed to calculate its effects by a receiving object. The HLA object model should only

include those interaction parameters which are intended to be passed through the RTI Send

Interaction service. The names of all such interaction parameters are documented in the Object

Interaction Table. Details on these parameters, such as resolution and accuracy, may be found in

the Attribute/Parameter Table of an HLA object model. Interaction parameters are specified

separately for each interaction class in the hierarchy and are not inherited from interaction

superclasses.

Interactions are one of the principal determinants of interoperability between simulations.

Interoperability ordinarily requires some consistency in the treatment of interactions afforded by the

different federates in which they appear. Consistency among the federates of a federation requires

consistent responses to the same types of public (or cross-federate) interactions, regardless of who

owns the initiating or affected objects. In distributed war fighting, for example, some uniformity in

treatment of engagement interactions is commonly required to ensure a fair fight between objects

HLA Object Model Template References

owned by different federates. Thus, it is essential that all public interactions in a FOM be identified

and that all federates in an HLA federation treat the specified interactions in a uniform fashion.

In addition, the RTI must know the types of interactions involved in a simulation execution

in order to support publication and subscription to their occurrences. Thus, the HLA object model

must document all of the interactions that may be sent during a federation execution so that the RTI

can recognize them. Inclusion of the initiating and receiving object class types in the object model

facilitates determination of all those federates in a federation that must directly accommodate a

particular interaction, since different federates typically support ownership of different object

classes. Inclusion of the parameters of interactions in the object model serves to identify the

specific parameters that may be provided by any federate sending this interaction, and responded to

by any federate whose objects are recipients of its effects.

3 .2 .2 Table Format

The template for recording object interactions for a federation or an individual federate is illustrated

in Table 3-3. It contains five main sections: interaction structure; initiating object class information;

receiving object class information; interaction parameters; and the capabilities of a federate to

initiate, sense, and/or react to the interaction. For any interaction in the table, an interaction type

(name) and initiating object class must always be specified. Interaction names in an HLA object

model must be defined via the ASCII character set, and must be globally unique: no interaction

name in an Object Interaction Table may be identical to any other interaction name elsewhere in this

table. A receiving object class need not be specified in cases where no special recipients are

identified. The interaction parameters may be empty if there is no need for the information they

might supply. The initiates/senses/reacts capabilities of a federate for each interaction class should

always be specified for SOMs. FOMs must also include this class of information for uniformity.

The interaction structure is shown in Table 3-3 with two columns that are intended to

capture some of the structure of interaction classes. The first column lists the most general type of

interaction, while the second column lists more specific interactions of the type of its

corresponding first column. If there is no hierarchical structure to interactions, then this second

column is unnecessary. If a simulation or federation has a deeper structure for interactions, dot

notation should be used in the interaction name of the first column to capture all the structure

HLA Object Model Template References

O
b

je
ct

 In
te

ra
ct

io
n

 T
ab

le

In
te

ra
ct

io
n

 S
tr

u
ct

u
re

In
it

ia
ti

n
g

 O
b

je
ct

R
ec

ei
vi

n
g

 O
b

je
ct

/A
re

a

In
te

ra
ct

io
n

P

ar
am

et
er

s

In
it

/

S
en

se
/

R
ea

ct
C

la
ss

A
ff

ec
te

d

A
tt

ri
b

u
te

s

C
la

ss

A
ff

ec
te

d

A
tt

ri
b

u
te

s

<
in

te
ra

ct
io

n>

[<
in

te
ra

ct
io

n>
]

<
cl

as
s>

[,<
cl

as
s>

]*

[<
at

tr
ib

ut
e>

]

[,<
at

tr
ib

ut
e>

]*

[(
<

co
m

m
en

t>
)]

*

[<
cl

as
s>

]

[,<
cl

as
s>

]*

[<
at

tr
ib

ut
e>

]

[,<
at

tr
ib

ut
e>

]*

[(
<

co
m

m
en

t>
)]

*

[<
pa

ra
m

et
er

>
]

[,<
pa

ra
m

et
er

>
]*

<
is

r>

[<
in

te
ra

ct
io

n>
]

<
cl

as
s>

[,<
cl

as
s>

]*

[<
at

tr
ib

ut
e>

]

[,<
at

tr
ib

ut
e>

]*

[(
<

co
m

m
en

t>
)]

*

[<
cl

as
s>

]

[,<
cl

as
s>

]*

[<
at

tr
ib

ut
e>

]

[,<
at

tr
ib

ut
e>

]*

[(
<

co
m

m
en

t>
)]

*

[<
pa

ra
m

et
er

>
]

[,<
pa

ra
m

et
er

>
]*

<
is

r>
...

...
...

...
...

...
...

<
in

te
ra

ct
io

n>

[<
in

te
ra

ct
io

n>
]

<
cl

as
s>

[,<
cl

as
s>

]*

[<
at

tr
ib

ut
e>

]

[,<
at

tr
ib

ut
e>

]*

[(
<

co
m

m
en

t>
)]

*

[<
cl

as
s>

]

[,<
cl

as
s>

]*

[<
at

tr
ib

ut
e>

]

[,<
at

tr
ib

ut
e>

]*

[(
<

co
m

m
en

t>
)]

*

[<
pa

ra
m

et
er

>
]

[,<
pa

ra
m

et
er

>
]*

<
is

r>
...

...
...

...
...

...
...

...

Table 3-3 Object Interaction Table

HLA Object Model Template References

down to the finest level of interaction. For example, if there is a sequence of interaction subtypes,
(interaction1, interaction1-1, interaction1-1-3), where interaction1-1-3 is a subtype of interaction1-1

which is a subtype of interaction1, then the compound entry “interaction1. interaction1-1” may

appear in the first column of the interaction structure, while the second column has the simple entry
“interaction1-1-3”. This convention helps conserve horizontal space in an already cramped table.

See Appendix A for a brief description of the general format used for specifying entries in this table

template.

The next group of columns lists the classes of objects involved in the specified interaction

and those of their public attributes which may be affected by the interaction. Initiating and receiving

objects are distinguished. If there is no basis for distinguishing an initiating from a receiving

object, either of the main participating object classes may be placed in either the initiating or

receiving columns. Either initiating or receiving objects may be specified by more than one class in

cases where multiple classes participate in the same manner in an interaction but no common

superclass shares that participation. The attributes of the interacting object classes that are

potentially affected by the interaction should be listed following the object class. Comments may be

included to clarify the nature of the effects on attributes, as indicated.

The parameter column lists the parameters of an interaction. These are the same parameters

that appear in a call to the Send Interaction service of the RTI for the listed interaction. If no

parameters are ever required for a particular type of interaction, then N/A should be entered in the

parameter column to indicate this.

The primary intent of the Init/Sense/React column of the Object Interaction Table is to

categorize the current capabilities of an individual federate with respect to object interactions. Three

basic categories are used to indicate capabilities with respect to a given type of interaction:

 initiates (I) : indicates that a federate is currently capable of initiating and sending
interactions of the type specified in that row of the Object Interaction Table.

 senses (S): indicates that a federate is currently capable of subscribing to the interaction
and utilizing the interaction information, without necessarily being able to effect the
appropriate changes to affected objects.

 reacts (R) : indicates that a federate is currently capable of subscribing and properly reacting
to interactions of the type specified by effecting the appropriate changes to any owned
attributes of affected objects.

A capability of initiates for an interaction requires not just the ability to call the HLA

Publish Interaction Class service for that interaction, but also the ability to model the initiation of

the interaction and to invoke the HLA Send Interaction service for such interactions when initiated.

HLA Object Model Template References

A federate senses a class of interactions if it is capable of utilizing information about such

interactions via a Receive Interaction message after having invoked the Subscribe Interaction Class

service of the RTI. It is not enough to simply be capable of receiving such interaction messages,

which any HLA compliant federate may do, but the information received in such messages must be

used somehow by the federate. For example, a stealth viewer that is incapable of determining the

effects of interactions might subscribe to them in order to adjust its display accordingly (e.g., to

show flashes during weapons fire). Such a viewer senses these types of interactions, even though

it never reacts to them, as described next.

A federate reacts to a class of interactions only if it has the capability for owning the object

ID of objects in the receiving class and/or has the capability for publishing affected attributes of

receiving objects. In this latter case, the federate must also be capable of updating the values of

those attributes to properly reflect the effects of the interaction. Naturally, not all interactions may

require changes to attribute values, but instead may involve changes to internal states that affect

attribute value updates. Minimally, a reacts capability for an interaction class requires a federate’s

ability to respond appropriately to the Receive Interaction calls from the RTI for such interactions.

Appropriate response capabilities include the ability to alter future updates of some of the affected

attributes, i.e., to affect the behavior of the affected objects.

Merely being able to reflect changes to the attribute values of objects affected by an

interaction does not represent a reacts capability for the interaction. A simulation that simply

reflects the consequences of some interaction in virtue of reflecting changes to the attribute values

of its affected objects without being able to generate such changes itself is described as reflecting

the attribute, not reacting to the interaction.

In a federation, at least one federate must have an initiates capability and at least one

federate must have either a senses or a reacts capability in order for an interaction to be included in

the FOM. Thus, a federation will always support one of the combinations IS or IR for each

interaction. An individual federate may support several more combinations of initiating, sensing,

and reacting to an interaction: {I, S, R, IS, or IR}. Any interaction in the SOM of a federate must

have one of these combinations of Init/Sense/React capabilities. If a federate cannot either initiate,

sense, or react to an interaction, then that type of interaction does not belong in its SOM.

3 .2 .3 Inclusion Criteria

A type of interaction should be included in a FOM whenever it can take place “across” a federation,

i.e., when it is an “external” type of interaction. Common examples of such interactions in

warfighting simulations include a variety of engagement interactions between platforms which may

be owned by different federates. It is essential for a FOM to include all external interactions in

HLA Object Model Template References

order to document the types of interactions that federation members and the RTI may need to

accommodate.

When interactions are not expected to occur across a federation, they need not appear in an

HLA FOM. For example, the interactions involved in the internal dynamics of an engine in an

engineering simulation of a vehicle might not be part of a FOM if no other federate in the federation

will interact directly with the engine component.

Since HLA SOMs are intended to be developed independently of any particular federation

application, the particular relevance of any currently supported interaction class to future

federations will generally be unknown. Thus, a simulation which supports either initiating,

sensing, or reacting for an interaction class should ordinarily document that support in its SOM if it

is considered of possible interest to future federations.

3 .2 .4 Example

A representation of some illustrative interactions, based on the restaurant example introduced in

Section 3.1.4, is given in Table 3-4. Here, two different abstract interaction classes are each

decomposed into two lower-level classes. In the first case, the abstract Food_Arrives interaction

class is decomposed into the Food_Arrives_at_Waiter and Food_Arrives_at_Customer interaction

classes. The first of these is represented as an interaction between a Cook object class and a Waiter

object class, and is meant to represent the event that the cook has finished preparing the order, and

is now handing off the order to the waiter for delivery. For the cook, an attribute named

Orders_Pending will be reduced by one due to this interaction, while the waiter may have his State

attribute modified to reflect his next task of delivering the food. The two interaction parameters

Order_Number and Table_Number are required by the Waiter object class to perform required

operations in his new state. Finally, as in all of the interactions illustrated in this example, it is

assumed that the restaurant federate can both initiate and react to interactions of this type.

The interaction Food_Arrives_at_Customer is meant to represent the arrival of the food at

the customer’s table. This may trigger another change of State for the waiter, and will affect the

degree of Satisfaction the customer has with the meal depending on the values of the three

interaction parameters.

HLA Object Model Template References

O
b

je
ct

 In
te

ra
ct

io
n

 T
ab

le

 I
n

te
ra

ct
io

n
 S

tr
u

ct
u

re

 I
n

it
ia

ti
n

g
 O

b
je

ct

 R

ec
ei

vi
n

g
 O

b
je

ct
/A

re
a

In
te

ra
ct

io
n

In
it

/S
en

se

C
la

ss

A
ff

ec
te

d
 A

tt
ri

b
u

te
s

C
la

ss

A
ff

ec
te

d
 A

tt
ri

b
u

te
s

P
ar

am
et

er
s

/R
ea

ct

F
oo

d_
A

rr
iv

es

F
oo

d_
A

rr
iv

es
_

C
oo

k O
rd

er
s_

P
en

di
ng

(R
ed

uc
e

by
 1

)

W
ai

te
r

S
ta

te

O
rd

er
_N

um
be

r,

at
_W

ai
te

r

T
ab

le
_N

um
be

r

F
oo

d_
A

rr
iv

es
_

W
ai

te
r

S
ta

te

C
us

to
m

er

S
at

is
fa

ct
io

n

T
em

pe
ra

tu
re

_O
K

,

IR

at
_C

us
to

m
er

A
cc

ur
ac

y_
O

K
,

T
im

el
in

es
s_

O
K

P
ay

_B
ill

P
ay

_B
ill

_
C

us
to

m
er

C
as

hi
er

D
ai

ly
_R

ec
ei

pt
s,

B
ill

_A
m

ou
nt

,

IR

by
_C

re
di

t_
C

ar
d

A
cc

ou
nt

s_
R

ec
ei

va
bl

e

C
ar

d_
V

al
id

ity

P
ay

_B
ill

_
C

us
to

m
er

C
as

h_
in

_W
al

le
t

C
as

hi
er

D
ai

ly
_R

ec
ei

pt
s,

B
ill

_A
m

ou
nt

IR

B
y_

C
as

h

C
as

h_
B

al
an

ce

IR

N
/A

Table 3-4. Object Interaction Table - SOM Example

HLA Object Model Template References

The abstract Pay_Bill interaction class is decomposed according to whether the customer is

paying by cash or by credit card. Although each involves an interaction between the customer and

the cashier, different attributes may be affected (as shown). In addition to specifying the bill

amount as an interaction parameter, the validity of the credit card (e.g., expiration date, credit limit)

may be needed for credit card interactions to determine if the transaction can be successfully

executed.

3.3 Attribute/Parameter Table

3 .3 .1 Purpose/Rationale

Each class of simulation domain objects is characterized by a fixed set of attribute types. These

attributes are named portions of their object’s state whose values can change over time (such as

location or velocity of a platform). Public attributes are those domain object attributes whose values

may be published through the RTI and provided to other federates in a federation. An HLA FOM

documents all such public attributes in the Attribute/Parameter Table. Because of the similarity

between information about attributes and interaction parameters, all interaction parameters are

documented along with attributes in the same table.

An HLA object model supports representation of the following characteristics for attributes

in the basic Attribute/Parameter Table:

• Object class • Units • Update type

• Attribute name • Resolution • Update rate/Condition

• Datatype • Accuracy • Transferable/Acceptable

• Cardinality • Accuracy condition • Updateable/Reflectable

The object class specifies the class of objects to which the attribute applies. The attribute

name identifies the attribute. The datatype column specifies the datatype of each attribute. The units

entries identify the units (such as m, km, kg) used for attribute values. A resolution characteristic is

intended to record how finely the published values of an attribute may differ from each other.

When attribute values take numeric values, a minimum possible quantitative variation in attribute

value may be recorded here. When attribute values are discrete, then this fact may be recorded.

The accuracy of an attribute captures the maximum deviation of the attribute value from its

intended value in the simulation or federation. This is often expressed as a numeric value, but may

also be perfect for attributes which have no deviation from intended values. The accuracy condition

of an attribute specifies any conditions required for the given accuracy to hold at any given time

HLA Object Model Template References

during simulation/federation execution. It may consist of a reference to a particular type of update

algorithm that determines the accuracy, or may be an unconditional always.

The update type and update condition characteristics specify the update policies for the

attribute. The transferable/acceptable characteristic provides an indication of whether ownership of

the attribute can be transferred to or accepted from different federates. Finally, the

updateable/reflectable characteristic is used to indicate capabilities for updating and reflecting the

attribute.

Interaction parameters are characterized in much the same way as attributes. Minor

differences include the fact that the interaction class is listed instead of the object class, and the

parameter name is listed instead of the attribute name. A more significant difference is that

parameters only utilize the first eight characteristics (object class, attribute name, datatype,

cardinality, units, resolution, accuracy, accuracy condition) since they are not subject to updates or

ownership transfer. For every interaction class identified in the Object Interaction Table, the full set

of parameters associated with that interaction class must be described in the Attribute/Parameter

Table.

The public attributes of objects must be specified in order to support subscription to their

values by other interested members of a federation. Thus, the names of attributes and associated

object classes are essential information for the RTI. Knowledge of public attributes is commonly

required for effective communication between federates in a federation. In addition, while the

resolutions, accuracies, and update policies of attributes represent characteristics that are not

directly utilized by the RTI (as defined by the HLA Interface Specification), all are important to

ensuring compatibility between federates in a federation. A federate operating with very low

resolution, accuracy, or update rates for an attribute that it is publishing could create problems for

interacting federates that are operating at higher resolutions, accuracies, or update rates. The

specification of resolutions, accuracies, and update rates in an HLA FOM is a part of the FOM

“contract” between federates to interoperate at the specified levels. It helps ensure a common

perception of the simulation space across federates in a federation, aiding the avoidance of

inconsistency between federates.

3 .3 .2 Table Format

The Attribute/Parameter Table of a FOM is designed to provide descriptive information about all

public attributes represented in a federation. In addition, it is used to capture information about

interaction parameters. The template for the Attribute/Parameter Table is provided by Table 3-5.

See Appendix A for a brief description of the syntax used for specifying entries in this table.

HLA Object Model Template References

A
tt

ri
b

u
te

/P
ar

am
et

er
 T

ab
le

O
b

je
ct

/

In
te

ra
ct

io
n

A
tt

ri
b

u
te

/

P
ar

am
et

er

D
at

a-

ty
p

e
C

ar
d

i-
n

al
it

y

U
n

it
s

R
es

o
lu

ti
o

n

A
cc

u
ra

cy
A

cc
u

ra
cy

C

o
n

d
it

io
n

U
p

d
at

e

T
yp

e

U
p

d
at

e

C
o

n
d

it
io

n

T
/A

U
/R

<
cl

as
s>

 |
<

in
te

ra
ct

io
n>

<
at

tr
ib

ut
e>

 |

<
pa

ra
m

et
er

>

<
da

ta
ty

pe
>

[<
si

ze
>

]
<

un
its

>

<
re

so
lu

tio
n>

<
ac

cu
ra

cy
>

<
co

nd
iti

on
>

<
ty

pe
>

<
ra

te
>

 |

<
co

nd
iti

on
>

<
ta

>
<

ur
>

<
at

tr
ib

ut
e>

 |

<
pa

ra
m

et
er

>

<
da

ta
ty

pe
>

[<
si

ze
>

]
<

un
its

>

<
re

so
lu

tio
n>

<
ac

cu
ra

cy
>

<
co

nd
iti

on
>

<
ty

pe
>

<
ra

te
>

 |

<
co

nd
iti

on
>

<
ta

>
<

ur
>

...
...

[<
si

ze
>

]

...
...

...
...

...
...

...
...

<
at

tr
ib

ut
e>

 |

<
pa

ra
m

et
er

>

<
da

ta
ty

pe
>

[<
si

ze
>

]
<

un
its

>

<
re

so
lu

tio
n>

<
ac

cu
ra

cy
>

<
co

nd
iti

on
>

<
ty

pe
>

<
ra

te
>

 |

<
co

nd
iti

on
>

<
ta

>
<

ur
>

<
at

tr
ib

ut
e>

 |

<
pa

ra
m

et
er

>

<
da

ta
ty

pe
>

[<
si

ze
>

]
<

un
its

>

<
re

so
lu

tio
n>

<
ac

cu
ra

cy
>

<
co

nd
iti

on
>

<
ty

pe
>

<
ra

te
>

 |

<
co

nd
iti

on
>

<
ta

>
<

ur
>

...
...

[<
si

ze
>

]

...
...

...
...

...
...

...
...

<
at

tr
ib

ut
e>

 |

<
pa

ra
m

et
er

>

<
da

ta
ty

pe
>

[<
si

ze
>

]
<

un
its

>

<
re

so
lu

tio
n>

<
ac

cu
ra

cy
>

<
co

nd
iti

on
>

<
ty

pe
>

<
ra

te
>

 |

<
co

nd
iti

on
>

<
ta

>
<

ur
>

...
...

...

[<
si

ze
>

]

...
...

...
...

...
...

...
...

 T
/A

 -
 T

ra
ns

fe
ra

bl
e/

A
cc

ep
ta

bl
e

U
/R

 -
 U

pd
at

ea
bl

e/
R

ef
le

ct
ab

le

<
cl

as
s>

 |
<

in
te

ra
ct

io
n>

<
cl

as
s>

 |
<

in
te

ra
ct

io
n>

Table 3-5. Attribute/Parameter Table

HLA Object Model Template References

The first column, Object/Interaction, lists an object class name for attributes or an

interaction class name for interaction parameters. The classes can be chosen from any level of

generality in the class structure hierarchy. In general, it will reduce redundancy if attributes are

specified for classes at the highest point in the hierarchy to which they generally apply, although

this is not required. For example, if all air vehicles have an attribute of minimum turn radius at

maximum speed, then it will avoid some redundancy if this attribute is specified just once for the

entire class of Air_Vehicle. Given that all object subclasses inherit the attribute types of their

superclasses, the subclasses of Air_Vehicle, such as Fixed_Wing and Rotary_Wing, also have this

attribute with its specified characteristics. When a subclass requires a revision to any inherited

attribute characteristic, a new attribute must be defined for the subclass with the required

characteristics.

The second column, Attribute/Parameter, lists the public attributes of the specified object

class or the parameters of an interaction. The names assigned to attributes of any particular object

class must be defined via the ASCII character set, and cannot duplicate (overload) the names of

attributes of any higher-level superclasses. There may be many public attributes for a single object

class and there may be many parameters for a single interaction class.

The Datatype column is used to reference the datatype of the attribute or parameter. This

datatype can be chosen from the list of permissible base attribute/parameter types (as described in

Appendix B), or it can be a user-defined datatype. User-defined datatype names must be different

than (not overload) the names of the base attribute/parameter types. The specific entry in this

datatype column may only contain the name of one of the base attribute/parameter types or an

identifier from one of the supplementary tables for enumerated and complex datatypes. When a

complex attribute or parameter consists of a homogeneous array or sequence of items which share

a common datatype, then this common datatype may be recorded in the datatype column. When the

subtypes of a complex datatype are heterogeneous, they require use of the supplemental Complex

Datatype Table, as described in Section 3.3.5.

The Cardinality column is used to record the size of an array or sequence. A designation of

1+ in this column allows for unbounded sequences, while fixed integer values designate complex

datatypes of fixed length. Cardinalities of multi-dimensional arrays should include the sizes of

every dimension listed in their normal order of precedence. For primitive attributes and parameters

having only a single element, a one (1) should be entered in this column.

The Units, Resolution, Accuracy, and Accuracy Condition columns are not applicable if the

datatype for an attribute or parameter is either enumerated or both complex and heterogeneous. The

reason is that these classes of information are either unnecessary (for enumerated datatypes), or are

recorded for the individual fields of complex datatypes in the Complex Datatype Table. For these

HLA Object Model Template References

and other datatypes in which units, resolution, and accuracy information do not apply (e.g.,

strings), the designator N/A for “Not Applicable” should be entered.

The Units column contains the units (e.g., m, km, kg) used for each attribute or parameter

whenever such units exist. Any units entered in this column specify the units of the entries in the

Resolution and Accuracy columns that follow it.

The Resolution column may have different kinds of entries, depending upon the kind of

attribute or parameter. For attributes or parameters of scalar numerical measures, the resolution

column may contain a single dimensioned numeric entry for each row of the table. This value may

specify the smallest resolvable value separating attribute values that can be discriminated.

However, when such attributes or parameters are stored in floating point datatypes, their resolution

so defined might vary with the magnitude of the attribute value. Hence, in these cases and others, a

better sense of the resolution may be conveyed by the datatype.

The Accuracy column is intended to capture the maximum deviation of the attribute or

parameter value from its intended value in the federate or federation. This is ordinarily expressed as

a dimensioned value, but may also be perfect for many discrete or enumerated attributes. The

Accuracy Condition column contains any conditions required for the given accuracy to hold in a

given simulation or federation execution. It may consist of reference to a particular type of update

algorithm that determines the accuracy, or may be an unconditional always.

The Update Type and Update Condition columns record the update policies for an attribute.

The update type can be specified as static, periodic, or conditional. When the update type is

periodic, then a rate of number of updates per time-unit can be specified in the Update Condition

column. Attributes with a conditional update type may have the conditions for update specified in

the update condition column. For interaction parameters, the indicator N/A should be entered into

each of these columns.

The Transferable/Acceptable (T/A) column is handled somewhat differently for simulations

and federations. In a federation, if an attribute is transferable from a federate, it must be acceptable

by some federate in the federation. But a single federate may be able to transfer ownership of an

attribute without being able to accept hand-off of attribute ownership from another federate. The

basic alternatives for the Transferable/Acceptable column are as follows:

 Transferable (T) : a federate is currently capable of publishing and updating attributes of the
type specified for the object class, and can transfer ownership of the attribute to another
simulation using the HLA RTI ownership management services.

HLA Object Model Template References

 Acceptable (A) : a federate is currently capable of accepting ownership of this attribute from
another federate, including the capability for meaningful continuation of attribute
updates.

 Not transferable or acceptable (N) : a federate is not currently capable of either transferring
ownership of this attribute to another federate or accepting ownership of this attribute
from another federate.

For an attribute of a SOM, the transferable/acceptable variable <ta> may take any of the values

from the set {T, A, TA, N}. In a FOM, the only valid entries in this column for federation

attributes are TA or N . For specification of object interaction parameters, this column should

contain the indicator N/A.

The Updateable/Reflectable (U/R) column of an Attribute/Parameter Table is used to

identify the current capabilities of a federate with respect to attribute updating and reflection. Two

basic categories are used to indicate capabilities with respect to a given attribute:

 Updateable (U) - the federate is currently capable of publishing and updating attributes of
the type specified for the object class specified using the Publish Object Class and
Update Attribute Values services of the RTI.

 Reflectable (R) - the federate is currently capable of accepting changes to this type of
attribute for objects in the specified object class for values provided from calls to the
Reflect Attribute Values service from the RTI.

For an attribute of a SOM, the updateable/reflectable variable <ur> in the

Attribute/Parameter Table may take any of three different combinations of capabilities for updating

and reflecting, as designated by their abbreviations {U, R, UR}. In a SOM, any listed attribute

must be either updateable or reflectable or both. For federations, the appropriate entry should

always be UR since all attributes in a FOM should be both updateable and reflectable. This column

should always contain the N/A indicator for interaction parameters.

3 .3 .3 Inclusion Criteria

All attributes that are designated as public, i.e., whose values are accessible to other federates in a

federation, should be documented in the Attribute/Parameter Table of a FOM. All attributes that can

be either updated or reflected by an individual federate belong in the Attribute/Parameter Table of

its SOM. All parameters to interactions that appear in the Object Interaction Table should appear in

the Attribute/Parameter Table. If an interaction parameter is also an attribute of an object class, then

it should appear in the Attribute/Parameter Table separately as an attribute and as a parameter.

In some object model descriptions, it may be desirable to document the capability or intent

to transfer the privilege of deleting the instantiation of a particular object class from one federate to

HLA Object Model Template References

another. In this case, the attribute “privilegeToDeleteObject”, which is automatically created by the

RTI when instantiating an object, should be included in the Attribute/Parameter Table to document

the applicable transferability characteristics. If omitted from the table, this privilege is assumed to

be neither transferable or acceptable.

3 .3 .4 Example

Table 3-6 shows illustrative examples of attributes and parameters from the restaurant application

as described in Section 3.1.4. In the first entry, the Employee object is characterized according to

the four attributes shown in the table. The datatypes specified for each of the first three attributes

were selected from the list of attribute/parameter basetypes (Appendix B), while the datatype of the

fourth attribute is user defined. As with all user-defined datatypes, the indicator N/A is placed in

the Units, Resolution, Accuracy, and Accuracy Condition columns. Each of these four attributes is

updated conditionally except for the Years_of_Service attribute, which is updated periodically

(yearly) on the employee’s start date anniversary. The Update Condition column for the Pay_Rate

attribute is annotated with an explanatory “note” as described earlier in Section 3. As with all of

the attributes and parameters shown in this example, the attributes of Employee are assumed

transferable, acceptable, updateable, and reflectable.

The Waiter subclass of Employee is shown with three attributes. These are in addition to

the four inherited attributes from its superclass. Each of the first two attributes, Efficiency and

Cheerfulness, is intended to represent a numeric score (performance measure), that is assigned to

the employee at yearly performance reviews. The third attribute is intended to represent the state of

the employee (the task he/she is performing) at any given point in time during restaurant

operations. The characterization of this attribute is via an enumerated datatype which is described in

a separate table.

The next set of entries represents the parameters associated with the interaction class

Food_Arrives_at_Customer. In this case, two of the three parameters are user-defined datatypes.

Since the Units through the Accuracy Condition columns do not apply for user-defined datatypes,

and the final four columns do not apply for interaction parameters, only the Datatype and

Cardinality columns have entries for these first two attributes. The third parameter uses a boolean

datatype (yes or no) to reflect whether the meal was served in a reasonable amount of time.

HLA Object Model Template References

A
tt

ri
b

u
te

/P
ar

am
et

er
 T

ab
le

O
b

je
ct

/

In
te

ra
ct

io
n

A
tt

ri
b

u
te

/

P
ar

am
et

er

D
at

a-

ty
p

e

C
ar

d
i-

n
al

it
y

U
n

it
s

R
es

o
-

lu
ti

o
n

A
cc

u
ra

cy
A

cc
u

ra
cy

C

o
n

d
it

io
n

U
p

d
at

e

T
yp

e

U
p

d
at

e

C
o

n
d

it
io

n

T
/A

U
/R

E
m

pl
oy

ee
P

ay
_R

at
e

F
lo

at

1

C
en

ts
/

H
ou

r

1

pe
rf

ec
t

al
w

ay
s

co
nd

i-
tio

na
l

M
er

it

In
cr

ea
se

s
[1

]

T
A

U
R

Y
ea

rs
_o

f_

S
er

vi
ce

S
ho

rt

1

Y
ea

rs

1

pe
rf

ec
t

al
w

ay
s

pe
rio

di
c

1/
ye

ar
, o

n

A
nn

iv
er

sa
ry

T
A

U
R

H
om

e_

N
um

be
r

S
tr

in
g

1

N
/A

pe
rf

ec
t

al
w

ay
s

co
nd

i-
tio

na
l

E
m

pl
oy

ee
R

eq
ue

st

T
A

U
R

E
ffi

ci
en

cy

S
ho

rt

1

N
/A

1

pe
rf

ec
t

al
w

ay
s

pe
rio

di
c

P
er

fo
rm

an
ce

R
ev

ie
w

T
A

U
R

C
he

er
fu

ln
es

s

S
ho

rt

1
1

pe
rf

ec
t

al
w

ay
s

pe
rio

di
c

T
A

U
R

S
ta

te

W
ai

te
r_

T
as

ks

1

co
nd

i-
tio

na
l

W
or

k
F

lo
w

T
A

U
R

T
em

pe
ra

tu
re

_

O
K

T
em

p_
T

yp
e

1

A
cc

ur
ac

y_

O
K

A
cc

ur
_T

yp
e

1

W
ai

te
r

F
oo

d_
A

rr
iv

es
_

at
_C

us
to

m
er

H
om

e_

A
dd

re
ss

A
dd

re
ss

_

T
yp

e

1

co
nd

i-
tio

na
l

E
m

pl
oy

ee
R

eq
ue

st

T
A

U
R

T
im

el
in

es
s_

O
K

B
oo

le
an

1
1

pe
rf

ec
t

al
w

ay
s

N
/A

N
/A

N
/A

P
er

fo
rm

an
ce

R
ev

ie
w

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

[1
] M

er
it

ra
is

es
 a

re
 n

ot
 p

ro
vi

de
d

ac
co

rd
in

g
to

 a
ny

 r
eg

ul
ar

 ti
m

e
in

te
rv

al
, b

ut
 a

re
 p

ro
vi

de
d

on
 a

 s
up

er
vi

so
r’s

 r
ec

om
m

en
da

tio
n

ba
se

d
on

 e
vi

de
nc

e

of
 e

xc
ep

tio
na

l e
ffo

rt
 a

nd
 p

er
fo

rm
an

ce
.

Table 3-6. Attribute/Parameter Table - SOM Example

HLA Object Model Template References

3 .3 .5 Attribute/Parameter Table Subcomponents

3 .3 .5 .1 Purpose/Rationale

While the Attribute/Parameter Table provides columns for datatype specifications, it does not

provide definitive guidance for specifying complex datatypes. This section describes additional

table formats for complex datatypes as well as for enumerated datatypes to better document their

structure and content. These tables are mandatory in situations where a federation or federate

implements the attribute or parameter datatypes for which the tables are designed.

3 .3 .5 .2 Enumerated Datatype Table

Table 3-7 describes the format of the Enumerated Datatype Table. The first column defines the

identifier (or name) for the enumerated datatype, while the second column provides the specific

enumerated values that the identifier can assume. For instance, one potential identifier for an

enumerated datatype might be affiliation, with the values of red, blue, and neutral representing

valid enumerators. The Representation column of the Enumerated Datatypes Table allows the

federation to define the agreed-upon numerical value for the specific enumerators. Each identifier

name should appear as an entry in the Datatype column of the OMT Attribute/Parameter Table, as

was discussed in Section 3.3.2. See Appendix A for a brief description of the general format used

for specifying the types of entries in this table.

Enumerated Datatype Table

Identifier Enumerator Representation

<datatype> <enumerator> <integer >

.

<datatype> <enumerator> <integer>

.

.

Table 3-7. Enumerated Datatype Table

An example of the use of the Enumerated Datatype Table is provided in Table 3-8. Here,

the user-defined Waiter_Tasks datatype specified in the earlier Attribute/Parameter Table example

(Section 3.3.4) is characterized according to five different enumerations. Each enumeration

represents a state that a waiter can be in at any particular point in time during restaurant operations.

The numerical representation of the enumerations does not have to be given in any particular order,

HLA Object Model Template References

but does need to be documented to avoid inconsistent representations among different federates in a

federation.

Enumerated Datatype Table

Identifier Enumerator Representation

Waiter_Tasks Taking_Order 1

Serving 2

Cleaning 3

Calculating_Bill 4

Other 5

Table 3-8. Enumerated Datatype Table - SOM Example

3 .3 .5 .3 Complex Datatype Table

Table 3-9 illustrates the format for the Complex Datatype Table. In the first column, Complex

Datatype, is the identifier, or name, of the user-defined complex datatype. Complex data type

identifiers should match a datatype entry from either the Attribute/Parameter Table or from the

Complex Datatype Table itself. The next column, Field Name, provides the means to identify each

individual field within the complex datatype. For instance, a complex datatype representing

location (with Location as its identifier) might have three sub-rows with the field names of X , Y ,

and Z (for rectangular coordinates). Alternately, two sub-rows with the field names of Lat and

Long might be used. The actual specification of the fields associated with a particular identifier is

entirely driven by the requirements of the federate or federation.

The remaining six fields in the Complex Datatype Table are identical to the corresponding

columns in the Attribute/Parameter Table (Section 3.3.2). The intent is to capture these classes of

information for each field within the complex data structure. This allows certain characteristics

common to all fields of a complex attribute (update type/condition, transferable/acceptable,

updateable/reflectable) to be specified at the composite level, while characteristics distinctive of the

individual fields of an attribute (units, resolution, etc.) are specified at this lower level.

The Complex Datatype Table may also include the names of other complex datatype

identifiers within the Datatype column for individual field names. This allows users to build

HLA Object Model Template References

C
o

m
p

le
x

D
at

at
yp

e
T

ab
le

C
o

m
p

le
x

D
at

at
yp

e

F
ie

ld
 N

am
e

D
at

at
yp

e

C
ar

d
in

al
it

y

U
n

it
s

R
es

o
lu

ti
o

n

A
cc

u
ra

cy
A

cc
u

ra
cy

C

o
n

d
it

io
n

<
co

m
pl

ex
 d

at
at

yp
e>

<
fie

ld
>

<
da

ta
ty

pe
>

<
si

ze
>

<

un
its

>

<

re
so

lu
tio

n>

<

ac
cu

ra
cy

>

<

co
nd

iti
on

>

.
.

.
.

.
.

.
.

.
.

.
.

<
fie

ld
>

<
co

m
pl

ex
 d

at
at

yp
e>

.
.

.
.

.
.

.
.

.
.

.

...

<
fie

ld
>

<
si

ze
>

.
.

.
.

.
.

.
.

.
.

.
.

<
da

ta
ty

pe
>

<
da

ta
ty

pe
>

...
...

...
...

...
...

...

<

un
its

>

<

re
so

lu
tio

n>

<

ac
cu

ra
cy

>

<

co
nd

iti
on

>

<
si

ze
>

<

un
its

>

<

re
so

lu
tio

n>

<

ac
cu

ra
cy

>

<

co
nd

iti
on

>

.

.

Table 3-9. Complex Datatype Table

HLA Object Model Template References

“structures of data structures” according to the needs of their federate or federation. See Appendix

A for a brief description of the general format used in specifying the types of entries permitted in

this table.

An example of the use of the Complex Datatype Table is provided in Table 3-10. The first

complex datatype (Address_Type) is shown as consisting of four fields, each identified as an

String datatype. Each of the other two complex datatypes (Temp_Type and Accur_Type) consists

of three Boolean fields. The intent is to specify for each Main_Course (composed of one Entree

and two instances of Side_Dish) whether the waiter served exactly what the customer ordered

(Accuracy_OK parameter) and whether the food was the right temperature (Temperature_OK

parameter). This information is used by the receiving object in the Food_Arrives_at_Customer

interaction to determine the value of the customer attribute Satisfaction.

HLA Object Model Template References

C
o

m
p

le
x

D
at

at
yp

e
T

ab
le

C
o

m
p

le
x

D
at

at
yp

e

F
ie

ld
 N

am
e

D
at

at
yp

e

C
ar

d
in

al
it

y

U
n

it
s

R
es

o
lu

ti
o

n

A
cc

u
ra

cy
A

cc
u

ra
cy

C

o
n

d
it

io
n

A
dd

re
ss

_T
yp

e

S
tr

ee
t

S
tr

in
g

1

N
/A

pe
rf

ec
t

al
w

ay
s

C
ity

S
tr

in
g

1

S
ta

te
S

tr
in

g

Z
ip

S
tr

in
g

T
em

p_
T

yp
e

E
nt

re
e

B
oo

le
an

1

V
eg

ie
_1

B
oo

le
an

V
eg

ie
_2

B
oo

le
an

A
cc

ur
_T

yp
e

B
oo

le
an

1

B
oo

le
an

B
oo

le
an

E
nt

re
e

V
eg

ie
_1

V
eg

ie
_2

1 1 1 1 1 1 1

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

1 1 1 1 1

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

pe
rf

ec
t

al
w

ay
s

al
w

ay
s

al
w

ay
s

al
w

ay
s

al
w

ay
s

al
w

ay
s

al
w

ay
s

al
w

ay
s

al
w

ay
s

N
/A

N
/A

N
/A

N
/A

Table 3-10. Complex Datatype Table - SOM Example

HLA Object Model Template References

HLA Object Model Template References

4. FOM/SOM LEXICON

4.1 Purpose/Rationale

If interoperability between simulations is to be achieved, it is necessary not only to specify the

classes of data required by the templates above but also to achieve a common understanding of the

semantics of this data. The FOM/SOM Lexicon provides a means for federations to document the

definitions of all terms utilized during construction of FOMs, and for individual federates to

document the definitions of all terms provided in their SOMs.

Federations may want to develop additional views on FOM and/or SOM data besides

simple term definitions and those explicitly defined by the OMT tables. The absence of additional

data views in this document is not meant to constrain federation or simulation developers from

defining whatever data views make sense for their specific application. Rather, by providing

federation/simulation developers maximum flexibility in this regard, libraries of reusable data

views (and automated tools that support them) may be constructed and made available for general

use in future applications.

4.2 Table Formats

4 .2 .1 Object Class Definitions

This section describes the format for defining the object classes that are specified in a given FOM

or SOM. A simple template for describing this information is provided in Table 4-1. The first

column of this table should contain the names of all object classes described in the FOM or SOM,

with the second column describing the semantics for that class. Abstract, higher-level superclasses

of instantiable subclasses should be defined as such, along with their purpose in the object class

hierarchy. Object classes that can have direct instances (concrete classes) should provide a

description of the real-world entity the class is intended to represent, along with any additional

information required to clarify the semantics of the class (e.g., fidelity). Users may optionally

include the names of the attributes of the object class, and the interactions that the class can initiate

or be affected by in the textual description of that object class.

HLA Object Model Template References

Object Class Definitions

Term Definition

<term name> <term definition>

<term name> <term definition>

.

<term name> <term definition>

Table 4-1. Object Class Definitions

4 .2 .2 Object Interaction Definitions

This section describes the format for defining the interactions that can occur between public object

classes in the FOM, and interactions that can be published and/or reflected at the individual

simulation level in the SOM. The structure for describing this information is provided in Table 4-2.

The first column of this table should contain the name of each interaction class. The second column

should provide sufficient descriptive information about the interaction class to ensure that the

semantics are clearly understood. For abstract interaction classes, this should include the rationale

for the use of the class in the interaction class hierarchy, and (optionally) the list of lower-level

subclasses it supports. For concrete (instantiable) interaction classes, the definition should include

a description of the real-world event the interaction class is intending to represent. The names of

the initiating and receiving objects associated with the interaction, and the parametric information

that must be included with the interaction, may also be provided.

Object Interaction Definitions

Term Definition

<term name> <term definition>

<term name> <term definition>

.

<term name> <term definition>

Table 4-2. Object Interaction Definitions

HLA Object Model Template References

4 .2 .3 Attribute/Parameter Definitions

This section describes the format for defining the attributes that characterize public object classes

and parameters that characterize interactions. The structure for describing this information is

provided in Table 4-3. The first column of this table should contain the name of the object class

that a given attribute belongs to, or the interaction a given parameter is associated with. This

information is useful for associating attributes with object classes, but is also required to

distinguish between attributes that share a common name but reside in different classes. The

second column of this table should contain the name of the attribute or parameter. The third column

of this table should describe the specific characteristic of the object class or interaction that this

attribute or parameter is designed to measure. Characteristics of the attribute/parameter that are

described in the OMT Attribute/Parameter Table (units, resolution, update rate, etc.) may be

repeated in the definition if it clarifies the meaning and purpose for the term.

Attribute/Parameter Definitions

Class Term Definition

<term name> <term name> <term definition>

<term name> <term name> <term definition>

.

<term name> <term name> <term definition>

Table 4-3. Attribute/Parameter Definitions

HLA Object Model Template References

Appendix A: Table Entry Notation

The OMT table specifications for the Object Class Structure Table, Object Interaction Table, and

Attribute/Parameter Table use a subset of Backus-Naur Form (BNF) [NAUR60] to specify the

types of entries that belong in particular table cells. In BNF, the types of terms to be substituted in

the table are enclosed in angle brackets (e.g., <class>). Optional entries are enclosed in square

brackets (e.g., [(<ps>)] for the optional Publishable/Subscribable capability entries of the Object

Class Structure Table). Any parentheses are terminal characters which should appear as shown.

Thus, the basic entry in a cell of the Object Class Structure Table, designated by <class> (<ps>),

indicates a class name followed by a Publishable/Subscribable code in parentheses. An asterisk (*)

is used to indicate a repetition of zero or more instances, such as in the last column of the Object

Class Structure Table where it indicates a variable number of entries for the most specific types of

classes, as follows:

[<class> (<ps>)] [,<class> (<ps>)]* | [<ref>]

A vertical bar (|) is used to indicate alternative possible entries. Thus, the specification for the last

column of the Object Class Structure Table (above) indicates optional entries of either a variable

length list of classes with Publishable/Subscribable codes or a reference to another table.

HLA Object Model Template References

HLA Object Model Template References

Appendix B: Attribute/Parameter Basetypes

The following list defines the complete set of basetypes that may be used to characterize object

attributes or interaction parameters.

• float - IEEE single-precision floating point number

• double - IEEE double-precision floating point number

• short - integer value in the range 0…216 - 1

• unsigned short - integer value in the range -215…215 - 1

• long - integer value in the range -231…231 - 1

• unsigned long - integer value in the range 0…232 - 1

• char - 8-bit quantity with a numerical value between 0 and 255 (decimal)

• boolean - quantity which can only take one of the values TRUE and FALSE

• octet - 8-bit quantity guaranteed not to undergo any conversion

• any - permits the specification of values which can express any basetype

• string - one-dimensional array of “chars” which is terminated with a NULL (0

value) char

• sequence - one-dimensional array of any basetype with two characteristics: a

maximum size (which is fixed at specification time) and a length (which is

determined at run time)

HLA Object Model Template References

Acronyms

ASCII American Standard Code for Information Interchange

BNF Backus-Naur Form

DoD Department of Defense

DMSO Defense Modeling and Simulation Office

FOM Federation Object Model

HLA High Level Architecture

N/A Not Applicable

OMT Object Model Template

OO Object-Oriented

RTI Runtime Infrastructure

SOM Simulation Object Model

HLA Object Model Template References

References

[DOD95] Department of Defense, Under Secretary of Defense (Acquisition and Technology)

(USD (A&T)), DoD Modeling and Simulation (M&S) Master Plan, Washington,

DC, October 1995.

[NAUR60] Naur, P. et al., “Report on the Algorithmic Language ALGOL 60,” Communications

of the ACM, Vol. 6, No. 1, January 1963, pp. 1-17.

Comments

Comments on this document should be sent by electronic mail to the Defense Modeling and

Simulation Office HLA Specifications mailing address (hla_specs@msis.dmso.mil). The subject

line of the message should include the OMT section number referenced in the comment. The body

of each submittal should include (1) the name and electronic mailing address of the person making

the comment (separate from the mail header), (2) reference to the portion of this document that the

comment addresses (by page, section number, and paragraph number), (3) a one-sentence

summary of the comment and/or issue, (4) a brief description of the comment and/or issue, and (5)

any suggested resolution or action to be taken.

